Learn MATHCAD-SCRIPTING with Real Code Examples
Updated Nov 27, 2025
Code Sample Descriptions
1
Mathcad – Simple Function Definition
f(x) := x^2 + 3
Defines a simple function f(x) that returns x² + 3.
2
Mathcad – For Loop Summation
sum(n) :=
Prog
s ← 0
for i ∈ 1..n
s ← s + i
return s
Uses a program block to sum integers from 1 to n.
3
Mathcad – Piecewise Condition Example
g(x) :=
if x < 0
-x
otherwise
x
Implements a conditional function using if-otherwise.
4
Mathcad – Numerical Derivative
y(x) := sin(x)
Dy(x) := d/dx(y(x))
Computes a derivative using Mathcad’s built-in derivative operator.
5
Mathcad – Matrix Initialization
A :=
⎡1 2 3⎤
⎣4 5 6⎦
⎣7 8 9⎦
Creates a 3×3 matrix using indexed assignment.
6
Mathcad – Simpson Integration
Simpson(f, a, b, n) :=
Prog
h ← (b - a)/n
s ← f(a) + f(b)
for i ∈ 1..n-1
if mod(i,2)=0
s ← s + 2*f(a+i*h)
otherwise
s ← s + 4*f(a+i*h)
return s*h/3
Uses a program block to perform Simpson’s rule numerical integration.
7
Mathcad – Solve System of Equations
Given
x + y = 10
x*y = 21
Find(x, y)
Solves two equations using the Mathcad solve block.
8
Mathcad – Vector Loop Example
vec(n) :=
Prog
v ← zeros(n)
for i ∈ 1..n
v[i ← i^2
return v
Builds a vector y where y[i] = i² inside a program loop.
9
Mathcad – Root Finding Example
h(x) := x*exp(-x) - 0.1
x0 := root(h(x), x)
Uses root function to find solution of an equation.
10
Mathcad – Custom Iterative Solver
Newton(f, df, x0, n) :=
Prog
x ← x0
for i ∈ 1..n
x ← x - f(x)/df(x)
return x
Uses a loop to approximate a root using Newton's method.