Learn HUGGINGFACE-TRANSFORMERS with Real Code Examples
Updated Nov 24, 2025
Code Sample Descriptions
1
Hugging Face Transformers Text Classification Example
from transformers import pipeline
# Load sentiment-analysis pipeline
classifier = pipeline('sentiment-analysis')
# Analyze text
result = classifier('I love using Hugging Face Transformers!')
print(result)
A minimal example using Hugging Face Transformers to perform sentiment analysis on text.
2
Hugging Face Transformers Named Entity Recognition Example
from transformers import pipeline
# Load NER pipeline
ner_pipeline = pipeline('ner', grouped_entities=True)
# Analyze text
text = 'Hugging Face is based in New York.'
result = ner_pipeline(text)
print(result)
Uses a pretrained pipeline to identify named entities in text.
3
Hugging Face Transformers Question Answering Example
from transformers import pipeline
# Load question-answering pipeline
qa_pipeline = pipeline('question-answering')
context = 'Hugging Face develops state-of-the-art NLP models.'
question = 'What does Hugging Face develop?'
result = qa_pipeline(question=question, context=context)
print(result)
Answers questions based on a given context using a pretrained model.
4
Hugging Face Transformers Text Generation Example
from transformers import pipeline
# Load text-generation pipeline
generator = pipeline('text-generation', model='gpt2')
prompt = 'Once upon a time'
result = generator(prompt, max_length=50)
print(result)
Generates text continuations using a language model.
5
Hugging Face Transformers Translation Example
from transformers import pipeline
# Load translation pipeline
translator = pipeline('translation_en_to_fr')
text = 'I love machine learning.'
result = translator(text)
print(result)
Translates text from English to French using a pretrained model.
6
Hugging Face Transformers Summarization Example
from transformers import pipeline
# Load summarization pipeline
summarizer = pipeline('summarization')
text = 'Hugging Face provides an open-source library that makes it easy to use state-of-the-art NLP models in Python applications.'
result = summarizer(text, max_length=50, min_length=25, do_sample=False)
print(result)
Summarizes long text using a pretrained summarization model.
7
Hugging Face Transformers Zero-Shot Classification Example
from transformers import pipeline
# Load zero-shot classification pipeline
classifier = pipeline('zero-shot-classification')
text = 'I love programming in Python.'
candidate_labels = ['programming', 'sports', 'politics']
result = classifier(text, candidate_labels)
print(result)
Classifies text into user-defined labels without model retraining.
8
Hugging Face Transformers Feature Extraction Example
from transformers import AutoTokenizer, AutoModel
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
model = AutoModel.from_pretrained('distilbert-base-uncased')
text = 'Transformers are amazing!'
inputs = tokenizer(text, return_tensors='pt')
outputs = model(**inputs)
# Get sentence embedding
embedding = outputs.last_hidden_state.mean(dim=1)
print(embedding)
Extracts embeddings from text using a pretrained model.
9
Hugging Face Transformers Masked Language Modeling Example
from transformers import pipeline
# Load fill-mask pipeline
unmasker = pipeline('fill-mask')
text = 'Hugging Face is creating a [MASK] library.'
result = unmasker(text)
print(result)
Predicts masked words in a sentence using a pretrained model.
10
Hugging Face Transformers Conversational Example
from transformers import pipeline, Conversation
# Load conversational pipeline
conversational_pipeline = pipeline('conversational')
conversation = Conversation('Hello! How are you?')
result = conversational_pipeline(conversation)
print(result)
Handles conversational input using a pretrained dialogue model.