Learn WEBGPU with Real Code Examples
Updated Nov 25, 2025
Installation Setup
Use WebGPU directly in modern browsers (Chrome, Edge, Firefox Nightly)
Enable experimental flags if required
Include JS code to request adapter and device
Set up canvas + GPU context
Start rendering pipeline with WGSL shaders
Environment Setup
Modern browser with WebGPU
HTTPS hosting
WGSL shader files
Optional: bundler setup
Optional: Node.js headless WebGPU backend
Config Files
index.html - canvas + script loader
main.js - WebGPU initialization
shaders.wgsl - shader code
assets/ - textures, models
optional bundler configs (Vite/Parcel)
Cli Commands
vite dev -> local development
esbuild bundling
npm create webgpu-app
GPU debugging tools via chrome://gpu
Shader validation via wgsl-analyzer
Internationalization
Handled via JS/HTML layer
WebGPU content remains universal
Text rendering controlled by CPU-side libraries
Localization independent of rendering
Globalization through browser features
Accessibility
Use semantic HTML for UI controls
Canvas output should have ARIA labels
Animated scenes require motion preferences
Browser-native accessibility features apply
WebGPU does not directly manage A11Y
Ui Styling
Handled in HTML/CSS separately
Canvas used for WebGPU output
UI overlays via DOM/CSS
Shaders handle rendering style
WebGPU is logic/render only
State Management
GPU-side buffers store high-volume state
BindGroup updates handle dynamic data
JavaScript controls high-level UI state
GPU computes final rendering state
Frame-by-frame GPU updates
Data Management
Use GPU buffers for structured data
Textures for images + storage
Minimize CPU-GPU data transfers
Use mappedAtCreation for bulk uploads
Prefer storage buffers for ML workloads