Learn FSHARP-FINANCE with Real Code Examples
Updated Nov 27, 2025
Installation Setup
Install .NET SDK (latest LTS recommended)
Install F# compiler and tooling (via Visual Studio, VS Code, or JetBrains Rider)
Add NuGet packages for finance: Deedle, Math.NET, FSharp.Data, Plotly.NET
Configure project for console, web, or library use
Test with simple script accessing financial CSV or JSON data
Environment Setup
Install .NET SDK
Install Visual Studio Code or Visual Studio with F# tooling
Configure NuGet package sources
Test simple script execution
Install financial libraries: Deedle, Math.NET, FSharp.Data
Config Files
.fsproj - project definition
NuGet package references (Deedle, Math.NET, Plotly.NET)
Data configuration (CSV/JSON/API endpoints)
Script files (.fsx) for ad-hoc analysis
Documentation and versioned pipelines
Cli Commands
dotnet fsi script.fsx -> execute F# script
dotnet build -> build F# project
dotnet run -> run console application
dotnet add package PackageName -> add NuGet library
dotnet restore -> restore project dependencies
Internationalization
Unicode support in data handling
Financial reports can adapt to locale formatting
Decimal and currency formatting via .NET globalization
Strings and labels can be localized in visualizations
Supports multi-currency and multi-market data pipelines
Accessibility
Cross-platform via .NET Core
Scripts accessible in any text editor
Integration with screen readers through IDEs
Programmatic pipelines for reproducibility
Accessible to developers familiar with functional programming
Ui Styling
Minimal; relies on .NET visualization libraries
Plotly.NET or XPlot for charts
Optional integration with WPF/WinForms for dashboards
Focus on programmatic visualization
Web-based UI via F# and SAFE stack
State Management
Immutable values maintain predictable state
Use modules for encapsulating financial computations
Async workflows manage real-time or streaming data
Pipelines allow controlled transformations
Pattern matching ensures safe branching and state handling
Data Management
Financial time series and market data
CSV, JSON, SQL, or API-sourced data
In-memory Deedle frames for computation
Exported results to Excel, databases, or visualization dashboards
Versioned scripts for reproducibility